Per gli esempi indicati da A 2 a A 5 sono stati applicati i dati seguenti.

Ambiente con rumore continuo per tutta la giornata:

Fréquenza in Hz	125	250	500	; 1k	2k	4k	8k
Livello per banda d'ottava Loct in dB	84	86	88	97	99	97	96

 $L_{A} = 104 \text{ dB}$

 $L_{\rm C} = 103~{\rm dB}$

 $L_C - L_A = -1 dB$

Classe di rumore HM

Protettore auricolare da valutare:

Frequenza in Hz	125	250	500	:1k	2k	4k	. 8k
Απεnuazione (APV) in dB	7,0	11,4	15,7	19,4	24,4	32.5	29,7

H = 25 dB

M = 19 dB

L = 13 dBSNR = 21 dB derivati înconformită all'ISO/DIS 4869 - 2

Livello di azione Latt = 85 dB (A)

A 2. Metodo per banda d'ottava

Fase 1: Calcolare il fivelio di pressione acustica ponderata A L'_A sotto il protettore auricolare utilizzando l'equazione seguente:

$$L'_{A} = 10 \log \sum_{i=125}^{8000} 10^{0.1} \{L_i + A_i - APV_i\}$$

dove: f rappresenta la frequenza centrale della banda d'ottava, in Hz;

è il livello di pressione acustica per banda d'ottava L_{oct} del rumore in dB nella banda d'ottava f;

A, è la ponderazione in frequenza A, in dB;

APV; è il valore di protezione presunto del protettore auricolare, in dB.

Nota - Se sono disponibili i dati di attenuazione a 63 Hz, il calcolo può iniziare a detta frequenza.

Fase 2: Arrotondare ai numero intero più prossimo.