IMPIANTI ELETTRICI

ENERGIA ELETTRICA

- forma di energia più conosciuta ed utilizzata
- facilmente trasportabile
- facilmente trasformabile in energia meccanica, termica, chimica, luce
- pericolosa in caso di guasti, di malfunzionamenti, di errato utilizzo

Ogni impianto deve essere concepito e strutturato in modo da ridurre nei limiti del possibile la probabilità di guasti e di utilizzi errati da parte di personale anche inesperto, che possono compromettere le due seguenti condizioni:

- la sicurezza (persone e beni)
- la continuità del servizio

I materiali necessari per la realizzazione dell'impianto elettrico, necessario per poter far funzionare le apparecchiature da installare, dovranno essere del tipo:

- idoneo all'ambiente in cui verranno installati
- in grado di resistere alle azioni meccaniche, chimiche, termiche alle quali potrebbero essere sottoposti durante l'uso

EFFETTI FISIOPATOLOGICI DELLA CORRENTE

TETANIZZAZIONE

Paralisi muscolare provocata dalla circolazione della corrente attraverso i tessuti nervosi che controllano i muscoli. Sovrapposta agli impulsi di comando della mente, la corrente li annulla fino a bloccare un arto o l'intero corpo.

ARRESTO RESPIRATORIO

Qualora siano coinvolti nella tetanizzazione i muscoli pettorali, i polmoni si bloccano e la funzione vitale della respirazione si arresta. La fase è di emergenza.

FIBRILLAZIONE VENTRICOLARE

La corrente interessa direttamente il muscolo cardiaco e può perturbarne il regolare funzionamento. Gli impulsi periodici che regolano in situazioni normali le contrazioni (sistole) e le espansioni (diastole) vengono alterati, il cuore vibra disordinatamente. La fase è di emergenza estrema perché si arresta il flusso vitale di sangue al corpo.

La fibrillazione è un fenomeno irreversibile, che si mantiene anche quando cessano le cause innescanti.

PROTEZIONE DELLA PERSONA

PARAMETRI DA CONSIDERARE

- Corrente che circola attraverso il corpo umano
- Tensione applicata al corpo
- Resistenza del corpo
- Tempo di passaggio della corrente

VALORI DI CORRENTE CHE ATTRAVERSO IL CORPO UMANO PROVOCANO EFFETTI PATOLOGICI

mA	EFFETTI
0.1-0.5	Piccole percezioni superficiali
0.5-10	Leggera paralisi dei muscoli delle braccia con
	principio di tetanizzazione
10-30	Nessun effetto fisiologico pericoloso se la scarica
	elettrica è interrotta entro 5 sec.
30-500	Estensione della paralisi ai muscoli del torace con
	sensazione di soffocamento ed intontimento,
	possibilità di fibrillazione cardiaca se la scarica
	elettrica si manifesta nella fase critica del ciclo
	cardiaco e per tempi superiori a 200 msec.
Oltre 500	Traumi cardiaci persistenti, fibrillazione cardiaca

ALCUNE DEFINIZIONI

ORIGINE DI UN IMPIANTO ELETTRICO

Punto di consegna dell'energia elettrica all'impianto utilizzatore. Nel caso di autoproduttori di energia si intendono per origine dell'impianto utilizzatore i morsetti di uscita del generatore o del trasformatore, se esistente.

CIRCUITO DI DISTRIBUZIONE

Alimenta un quadro di distribuzione; si tratta di tutti i circuiti di potenza che non siano circuiti terminali.

CIRCUITO TERMINALE

Collegato direttamente agli apparecchi utilizzatori o alle prese a spina

COMPONENTE ELETTRICO

Indica sia i componenti dell'impianto, sia gli apparecchi utilizzatori

CONTATTO DIRETTO

Contatto di persone con parti attive

CONTATTO INDIRETTO

Contatto di persone con una massa in tensione per guasto

MASSA

Parte conduttrice di un componente elettrico che può essere toccata e che non è in tensione in condizioni ordinarie, ma che può andare in tensione in condizioni di guasto.

MASSA ESTRANEA

Parte conduttrice non facente parte dell'impianto elettrico, in grado di introdurre un potenziale, generalmente il potenziale di terra.

APPARECCHIO UTILIZZATORE

Trasforma l'energia elettrica in un'altra forma di energia, per esempio luminosa, calorica o meccanica.

Un apparecchio utilizzatore si denomina:

trasportabile, se può essere spostato facilmente

mobile, se deve essere spostato dall'utente per il suo funzionamento mentre è collegato al circuito di alimentazione

portatile, se destinato ad essere sorretto dalla mano durante il suo impiego

INVOLUCRO

Parte che assicura la protezione di un componente elettrico contro determinati agenti esterni e contro i contatti diretti

ISOLAMENTO PRINCIPALE

Isolamento delle parti attive utilizzato per la protezione contro i contatti diretti ed indiretti

DOPPIO ISOLAMENTO

Comprende sia l'isolamento principale che il supplementare che è un isolamento aggiunto al principale. Un isolamento che applicato alle parti attive sia in grado di assicurare un grado di isolamento equivalente a quello del doppio isolamento, si denomina isolamento rinforzato

CONDUTTORI DI PROTEZIONE

Conduttore prescritto per alcune misure di protezione contro i contatti indiretti per il collegamento di alcune delle seguenti parti:

masse, masse estranee, collettore o nodo principale di terra, dispersore o punto di terra della sorgente o neutro artificiale

CONDUTTORI EQUIPOTENZIALI

Conduttore di protezione destinato ad assicurare il collegamento equipotenziale delle masse estranee

PROTEZIONE CONTRO I CONTATTI DIRETTI

Può essere ottenuta mediante le seguenti misure:

- 1. misure di protezione totale
- 2. misure di protezione parziali, che evitino il contatto diretto con parti in tensione (protezione passiva)
- 3. misure di protezione addizionali mediante dispositivi a sovraccorrente o a corrente differenziale (protezione attiva)

MISURE DI PROTEZIONE TOTALI

- Mediante isolamento delle parti attive senza possibilità di rimuovere l'isolamento
- Mediante involucri o barriere

Per involucro si intende un elemento costruttivo quali una scatola, una custodia, un quadro, tale da impedire il contatto diretto in ogni direzione tra operatore e parti attive pericolose.

Involucri e barriere devono assicurare un grado di protezione minimo non inferiore a IPXXB.

La rimozione delle barriere o involucri può avvenire secondo uno dei seguenti modi:

- mediante l'uso di un attrezzo (cacciavite, chiave, ecc.)
- mediante lo sgancio automatico dell'interruttore generale interbloccato con l'apertura della barriera (es. portello di un quadro)
- con l'interposizione di una barriera intermedia con grado di protezione IPXXB.

MISURE DI PROTEZIONE PARZIALI

- Mediante ostacoli
- Mediante distanziamenti

Deve essere consentita nei locali accessibili esclusivamente a personale addestrato (officine elettriche, cabine, retroquadri, ecc.)

Protezione mediante ostacoli

Nelle officine o all'interno di grossi quadri ad armadio non chiusi a chiave o con altri mezzi speciali, la protezione contro i contatti diretti va realizzata con ostacoli fissi (grate protettive, transenne, ecc.), ma con possibilità di rimuoverli senza attrezzi, atti ad impedire l'avvicinamento o il contatto accidentale con parti attive.

Protezione mediante distanziamenti

I requisiti a cui devono rispondere le officine elettriche e comunque tutti i luoghi accessibili a solo personale addestrato, per i quali non è richiesta la protezione contro i contatti diretti sono:

- accesso subordinato all'utilizzo di mezzi speciali (chiave)
- presenza di cartelli monitori che segnalino chiaramente il luogo riservato a persone autorizzate
- possibilità di uscire agevolmente, senza l'uso di mezzi speciali, dalle porte di accesso anche se chiuse esternamente a chiave
- passaggi di servizio e/o manutenzione con le dimensioni minime di sicurezza indicate in figura

MISURE DI PROTEZIONE ADDIZIONALI

• Mediante interruttori differenziali con I∆n < 30mA (protezione attiva mediante interruzione automatica del circuito)

PROTEZIONE CONTRO I CONTATTI INDIRETTI

Sono da considerarsi insidiosi poiché risulta difficile evitare contatti indiretti in quanto è impossibile astenersi dal contatto con parti conduttrici (masse), che in caso di guasto si vengono a trovare ad un potenziale diverso da quello di terra.

La protezione contro i contatti indiretti viene assicurata mediante:

PROTEZIONE ATTIVA

- interruzione automatica dell'alimentazione

Il dispositivo di interruzione automatica del circuito deve aprire il circuito stesso in modo che la tensione pericolosa sulle masse permanga per un tempo inferiore a quello indicato dalla curva di sicurezza

PROTEZIONE PASSIVA

- componenti elettrici di Classe II o con isolamento equivalente
- separazione elettrica (quando un circuito è isolato e di piccola estensione, in caso di guasto la corrente che fruisce attraverso la persona è trascurabile e tale da non provocare danni)
- locali isolanti
- locali equipotenziali

PROTEZIONE COMBINATA

- Circuiti SELV bassissima tensione di sicurezza
- Circuiti PELV bassissima tensione di protezione

CABINE ELETTRICHE

1. DEVONO ESSERE CHIARAMENTE INDICATI:

- I VALORI DI TENSIONE
- LO SCHEMA DELL'IMPIANTO ELETTRICO
- I CIRCUITI A DIFFERENTE TENSIONE
- UNA TABELLA CON LE ISTRUZIONI SUI SOCCORSI DA PRESTARE AI COLPITI DA CORRENTE ELETTRICA
- IL DIVIETO DI INGRESSO E L'AVVISO DI PERICOLO DI MORTE CON IL CONTRASSEGNO DEL TESCHIO SULLA PORTA D'ENTRATA
- IL DIVIETO DI USARE ACQUA PER SPEGNERE L'INCENDIO

2. OGNI CABINA ELETTRICA DEVE ESSERE DOTATA DI:

- PORTE DI ACCESSO CHIUSE A CHIAVE
- ILLUMINAZIONE ARTIFICIALE DI EMERGENZA
- RIPARI ALTI ALMENO 2 M PER LA PROTEZIONE CONTRO I CONTATTI ACCIDENTALI DEI CONDUTTORI NUDI AD ALTA TENSIONE
- NECESSARI ATTREZZI ISOLANTI (PEDANE, GUANTI, ELMETTI, ECC.)
- MEZZI DI ESTINZIONE DI INCENDIO
- 3. E' VIETATO DEPOSITARE ALL'INTERNO DELLE CABINE MATERIALI, INDUMENTI O ATTREZZI NON ATTINENTI L'ESERCIZIO DELLA CABINA